湖州西门子硬件供货商代理商
我公司是西门子签约代理商备有大量西门子产品浔之漫智控技术(上海)有限公司:西门子授权代理商
现货库存;大量全新库存,款到48小时发货,无须漫长货期
西门子PLC(S7-200、S7-200SMART、S7-300、S7-400、S7-1200、S7-1500、ET200S、ET200M、ET200SP)、触摸屏、变频器、工控机、电线电缆、仪器仪表等,产品选型、询价、采购,敬请联系,浔之漫智控技术(上海)有限公司
Our company is a contracted agent of Siemens, with a largenumber of Siemens products Xunzhiman Intelligent Control Technology(Shanghai) Co., Ltd.: an authorized agent of Siemens
Spot stock; A large number of brand new inventory, deliverywithin 48 hours, no long lead time
Siemens PLC (S7-200, S7-200 SMART, S7-300, S7-400, S7-1200,S7-1500, ET200S, ET200M, ET200SP), touch screen, frequencyconverter, industrial personal computer, wire and cable,instruments and meters, product selection, inquiry and purchase,please contact Xunzhiman Intelligent Control Technology (Shanghai)Co., Ltd
(1)温度PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。
(2)湿度为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。
(3)震动应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。
(4)空气避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。
(5)电源PLC对于电源线带来的干扰具有一定的抵制能力。在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。
2.控制系统中干扰及其来源
现场电磁干扰是PLC控制系统中较常见也是易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。必须知道现场干扰的源头。
(1)干扰源及一般分类
影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。
(2)PLC系统中干扰的主要来源及途径
a.强电干扰
PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,刀开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。
b.柜内干扰
控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。
c.来自信号线引入的干扰
与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。
TI认为在可穿戴设备中,电池通常非常小(例如100mAh),设备又需要持续几天甚至是几个星期而又不用充电,功耗是一个关键的设计考虑因素。高功率转换效率将是一个关键的设计要素。时尚的手腕式可穿戴设备要想保持其酷炫特点,电子电路需要保持在极小的尺寸以内。这推动了高水平的包括电源管理IC在内的全器件集成。功率器件的占板面积和封装应做到尽可能小。可穿戴设备可能采用新型电源,例如对太阳能或热能进行能量采集。某些产品可能更倾向于非接触式充电。这些非接触式充电当中包括了无线充电。
对于可穿戴电源目前存在的设计挑战,了以下五点。
1、在锂电池过充或温度过高会导致起火,锂电池的安全性问题仍让人担忧的充电器应具有几乎所有类型的安全设计,包括过压保护、过流保护、过温保护、短路保护和低温充电等,甚至是在充电器IC及解决方案尺寸必须保持非常小的情况下也是如此。
2、因为可穿戴设备中的电池较小,充电精度的需求提高使为这些小电池充电并非易事。充电器必须能够提供更小的充电截止电流。换言之,充电器的精度应该更高,达m*。例如,在智能手机系统中,2,000mAh电池的正常充电电流为1.2 A(0.6 C),充电截止电流应为正常充电电流的1/10~1/20,即120 mA~60mA。在手环中,由于电池容量可能为100 mAh,正常充电电流将为60 mA,充电截止电流应为6 mA~3mA。满足这种要求的充电器器件很难找到。
3、可穿戴设备应具有较长续航时间。通常,如果消费者每天都要为设备充电,他们就会不高兴。在现在许多的智能手机都必须一两天充电一次的情况下,终端用户显然期待能够有所改善。整个电源管理应能够提供高效率的电源转换系统,这包括:稳压器效率,以及稳压器和电池充电器应提供低静态电流、低待机电流和低漏电流。具有极低漏电流和待机电流以及低静态电流的电源管理器件更加难于设计。
4、甚至是现今的电池技术也不能完*电池运行时间的诉求。我们需要在使用可穿戴设备的开发新的电源。新型电源的瓶颈在于其转换为可用功率时,功率密度和转换效率极低。
5、在可穿戴设备中,因为湿度、腐蚀等关系,许多产品的失效点为充电/信号连接器。
针对这些设计挑战,TI 的应对措施如下。
1、TI的充电器IC和电量计IC为工作中的电池提供了广泛的保护和监控。TI在保持相同水平保护功能的缩小半导体尺寸的过程中取得了成功。例如,bq24040和bq25100都与JEITA标准兼容。两者都具有Ts输入用于监控电池热敏电阻,以保证充电温度在合适范围内。bq24040尺寸为2mm×2mm,并且在2014年中期推出bq25100之前是小的充电器。bq25100尺寸为1.6 mm×0.9mm,与0603尺寸的电容相当(图1)。
2、主流可穿戴设备品牌采用TIbq24040/45或bq24232(带电源通路)充电器IC,是因为它们的尺寸较小(分别为2mm×2mm和3mm×3mm)、精度较高。并且在适配器连接时,甚至是电池电量耗尽时,bq24232允许系统立即上电。在*的可穿戴设计中,精度和电源通路特性青睐。bq25100允许正常充电电流小为10mA,并且能够将充电截止电流或预充电电流设置为1mA,这是针对可穿戴设备的业界精度。
湖州西门子硬件供货商代理商