风力发电机塔架是连接风机的重要部件,它承受了风力作用在叶轮上的推力、扭矩、弯短、陀螺力矩、电机的振动及受力变化时的摆动。行业内就出现过由于塔架质量问题导致的风机倒場质量事故。风力发电机组塔架生产检验过程中,多次使用到无损检测来检验原材料、外购法兰以及焊接焊,来保证风机塔架的质量。
风力发电机塔架缺陷检测内容一般有:
1、风机塔筒焊缝(环缝、纵缝)检测:表面裂痕检测MT(磁粉检测)、PT(渗透检测)、内部缺陷检测UT(超声波检测);
2、风机法兰连接螺栓检测:内部缺陷检测UT(超声波检测);
3、风机轮毂与主轴连接螺栓检测:内部缺陷检测UT(超声波检测);
4、风机塔机垂直度检测:借助水准仪、经纬仪检测;
5、风电机架检测:表面裂痕检测MT(磁粉检测)、PT(渗透检测)、内部缺陷检测UT;
风电厂一期20台风机监测结论:
(1)2024年度观测值与2021年度观测值的变化量对比分析:A1线风机变化Zui大观测点为A1-08F其中观测点1、观测点2、观测点2、观测点4累计变化值分别为5.63、8.49、1.48、3.96平均速率Zui大为0.012mm/d,未超过允许值;地基局部倾斜Zui大点为A1-09F,Zui大倾斜率tanθ=0.0009,未超过允许值。
(2)2024年度观测值与2021年度观测值的变化量对比分析:A2线风机变化Zui大观测点为A2-07F其中观测点1、观测点2、观测点2、观测点4累计变化值分别为7.57、5.78、0.19、2.12平均速率Zui大为0.012mm/d未超过允许值;地基局部倾斜Zui大点为A2-10F,Zui大倾斜率tanθ=0.0009,未超过允许值。
风电厂一期20台风机各个观测点变化量及累计变化量均在允许范围之内。
近年来,我国风电高塔架技术进步显著,钢混塔架以其大容量机组高塔架的技术可实现性、更具经济性的优势得到了广泛应用。远景能源170米混塔在2023年实现批量交付;运达股份也于同年完成180米超高性能混凝土材料混塔吊装,并在不久前实现全球首个180米超高混塔风电项目首批机组并网。它们与上述185米钢混塔一起,为风电机组大型化发展和高切变地区风能资源开发,起到了积极推动作用。
利用钢混塔将机舱与风轮托举到更高的空中,对风电发展而言,有两项意义Zui为重要:一方面,更高的塔架能支撑机组大型化发展。近些年,我国风电机组单机容量不断增大,为提升大容量机组的发电能力,更长的叶片应运而生。目前,我国已下线的Zui长陆上风电与海上风电叶片分别达到131米和143米。如果塔架高度不足,叶片与地面就无法保持安全距离,极易给整机带来安全隐患。
作为风电机组与混凝土建筑物的结合体,混凝土塔架在标准体系、检验检测认证、运维监测的综合解决方案尚不完善。湖州风机塔筒检测,实施全面的设备风险评估,针对风机、变电站及其附属设施,采用数据驱动的方法进行风险等级划分,优先关注高风险区域。不同的钝化处理也会影响膜的成分与结构,从而影响不锈性,如通过电化学改性处理,可使钝化膜具有多层结构,在阻挡层形成CrO3或Cr2O3,或形成玻璃态的氧化膜,使不锈钢能发挥Zui大的耐蚀性。国内外学者对不锈钢钝化膜的生成进行了大量研究。以近几年北京科大对316L钢钝化膜光电子能谱(xps)研究为例作简述。不锈钢钝化是表面层由于某种原因溶解与水分子的吸附,在氧化剂的催化作用下,形成氧化物与氢氧化物,并与组成不锈钢的cr、NMo元素发生转换反应,Zui终形成稳定的成相膜,阻止了膜的破坏与腐蚀的发生。